# MODE STATISTIQUE A UNE VARIABLE DE QUELQUES CALCULATRICES

# (Cliquer sur la calculatrice choisie)

### **Calculatrices CASIO:**

```
FX 92 - Collège
```

FX 92 – Collège New +

FX 92 – Collège 2D

**GRAPH 25 +** 

GRAPH 35 + et 65

### Calculatrices TEXAS INSTRUMENTS:

TI 3O Xa

TI - 40 Collège II

TI - 30 X II B

TI 84 et 84 +



#### CASIO fx-92 Collège

\* On passe en mode statistique (



2

(SD s'affiche en haut de l'écran)

\* On efface les mémoires statistiques

SECONDE MODE CLR

1 EXE (Scl : stat clear)

# Exemple:

|   | Note    | Effectif |                                                               |
|---|---------|----------|---------------------------------------------------------------|
|   | $(x_i)$ | $(n_i)$  |                                                               |
|   | 12      | 1        | $\longrightarrow 12 \qquad ; \qquad 1 \qquad M+ \qquad (n=1)$ |
| F | 1 5     | 4        | $\implies 15 \qquad ; \qquad 4 \qquad M+ \qquad (n=5)$        |

- \* Pour déterminer l'effectif total
  - $\bigcirc$  On trouve : N = 5
- \* Pour déterminer la moyenne
  - $rac{1}{2}$  On trouve la note moyenne :  $\overline{x} = 14.4$
- \* Pour déterminer l'écart type
  - $\mathcal{F}$  On trouve l'écart type :  $\sigma = 1,2$
- \* Pour déterminer Σn<sub>i</sub>x<sub>i</sub>
  - $\mathfrak{S}$  On trouve :  $\Sigma \mathbf{n_i} \mathbf{x_i} = 72$
- \* Pour déterminer Σn<sub>i</sub>x<sub>i</sub><sup>2</sup>
  - $\mathfrak{S}$  On trouve :  $\Sigma n_i x_i^2 = 1044$













### CASIO fx-92 Collège New+

On passe en mode statistique



(SD s'affiche en bas de l'écran)

\* On efface les mémoires statistiques







### Exemple:

| Note    | Effectif |               |   |   |                |       |
|---------|----------|---------------|---|---|----------------|-------|
| $(x_i)$ | $(n_i)$  | 12            |   | 1 | M <sub>+</sub> | (n=1) |
| 12      | 1        |               |   |   |                |       |
| 15      | 4        | $\implies 15$ | ; | 4 | M+             | (n=5) |

- \* Pour déterminer l'effectif total
  - $^{\circ}$  On trouve : N = 5
- \* Pour déterminer la moyenne
  - $\mathfrak{F}$  On trouve la note moyenne : x = 14,4
- \* Pour déterminer l'écart type
  - $\mathcal{F}$  On trouve l'écart type :  $\sigma = 1,2$
- \* Pour déterminer Σn<sub>i</sub>x<sub>i</sub>
  - $\mathfrak{S}$  On trouve :  $\Sigma n_i x_i = 72$
- \* Pour déterminer  $\Sigma n_i x_i^2$ 
  - $\mathfrak{S}$  On trouve :  $\Sigma n_i x_i^2 = 1044$













**SECONDE** 





**SECONDE** 



 $\Gamma \Sigma x \gamma$ 



**SECONDE** 



 $\Gamma \Sigma X^2$ 

EXE

Collège 2D

8 9 DEL AC

3√6

CASIO

# CASIO fx-92 Collège 2D

En premier, vérifier le paramétrage de la calculatrice :









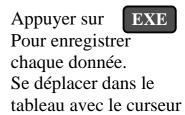
(Menu SETUP-STAT-ON : On montre la colonne des fréquences) Remarque : Pour masquer cette colonne taper « 2 » au lieu de « 1 ».

\* On passe en mode statistique



Les mémoires statistiques sont automatiquement effacées quand on entre dans la mode « STAT »

- \* On choisit le type : 1
- \* On saisit les données. **Normalement l'éditeur STAT est affiché**. S'il ne l'est pas faire : SHIFT STAT 3


(1-VAR)

Exemple:

| Note    | Effectif |  |  |
|---------|----------|--|--|
| $(x_i)$ | $(n_i)$  |  |  |
| 12      | 1        |  |  |
| 15      | 4        |  |  |



|   | STAT |      |
|---|------|------|
|   | X    | Freq |
| 1 | 12   | 1    |
| 2 | 15   | 4    |



(Stat-Data)

- \* Pour déterminer l'effectif total : STAT-Var-n
  - $^{\circ}$  On trouve : N = 5









- \* Pour déterminer la moyenne : STAT-Var-x
  - $\mathcal{F}$  On trouve la note moyenne :  $\overline{x} = 14,4$









- \* Pour déterminer l'écart type : STAT-Var-xon









- \* Pour déterminer  $\Sigma n_i x_i$ : STAT-Sum- $\Sigma x$ 
  - $\mathfrak{F}$  On trouve :  $\Sigma n_i x_i = 72$









- \* Pour déterminer  $\Sigma n_i x_i^2$  : STAT-Sum- $\Sigma x^2$ 
  - $\mathfrak{S}$  On trouve :  $\Sigma n_i x_i^2 = 1044$

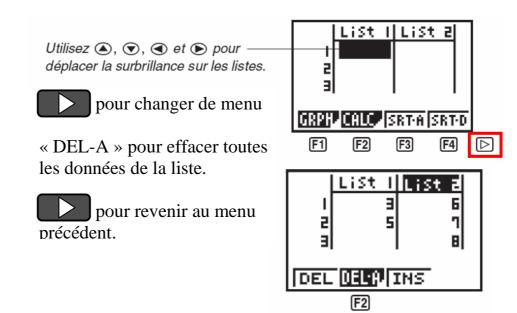











#### CASIO Graph 25 +

\* Passer en mode statistique :



2

\* Effacer les listes de données « List 1 » et « List 2 » si nécessaire.



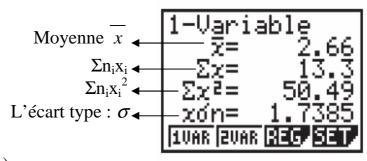
\* Entrer les données dans les listes : Les valeurs  $x_i$  en « list 1 » et les effectifs  $n_i$  en « list 2 ». Utiliser le curseur et la touche  $\fbox{EXE}$  pour valider chaque donnée.

- \* Calculs statistiques:
  - Spécification de la liste des données : F2 (CALC) F4 (SET)

1Var X : List 1 (x<sub>i</sub>)

1 Var F: List 2 (n<sub>i</sub>) ou 1 si chaque effectif est

égal à 1.

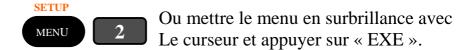

- Les résultats des calculs : Retourner au menu précédent.





Le menu suivant s'affiche.

On peut obtenir d'autres caractéristiques en se déplaçant avec le curseur (effectif total, médiane, maximum, minimum, ...)



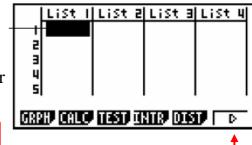



#### **CASIO** *Graph* 35 + *et* 65

Dans tout ce qui suit, si les menus ne correspondent pas à ceux de votre calculatrice, appuyer éventuellement plusieurs fois sur la touche « EXIT » et sur la touche « F6 » permettant de voir la suite d'un menu.

\* Aller dans le menu « STAT » pour entrer les données.




\* Effacer les listes de données « List 1 » et « List 2 » si nécessaire.

à l'aide du curseur.

« DEL-A » pour effacer toutes
les données de la liste. Confirmer

« YES ». Pour accéder au menu
faire F6

Mettre « List 1 » en surbrillance



Faire de même avec la liste 2.

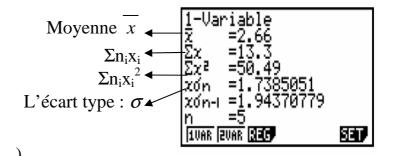
\* Entrer les données dans les listes : Les valeurs  $x_i$  en « list 1 » et les effectifs  $n_i$  en « list 2 ». Utiliser le curseur et la touche EXE pour valider chaque donnée.

- \* Calculs statistiques:
  - Spécification de la liste des données : F2 (CALC) F6 (SET)

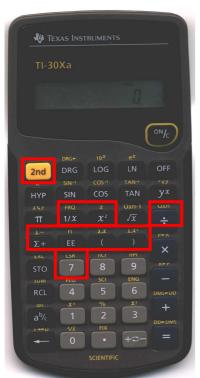
 $1 \text{Var } X : \text{List } 1 (x_i)$ 

 $1 \text{ Var } F: List \ 2 \ (n_i) \ ou \ 1 \ si \ chaque \ effectif \ est$ 

égal à 1.


- Les résultats des calculs : Retourner au menu précédent.



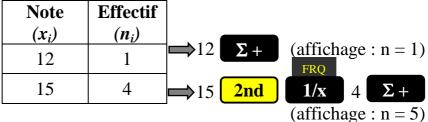



Le menu suivant s'affiche.

On peut obtenir d'autres caractéristiques en se déplaçant avec le curseur (effectif total, médiane, maximum, minimum, ...)



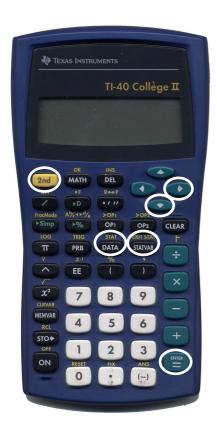
### Texas Instruments TI-30 Xa




\* On efface les mémoires statistiques (si STAT est affiché)



\* On saisit les données.


# Exemple:



Une fois les données saisies :

| * Pour déterminer l'effectif total  • On trouve : N = 5                      | 2nd EE                                                                                      |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| * Pour déterminer la moyenne  • On trouve la note moyen                      | $ \begin{array}{c c} 2nd & X^2 \\ x & X^2 \end{array} $ $ \text{ne} : \overline{x} = 14,4 $ |
| * Pour déterminer l'écart type  * On trouve l'écart type : •                 | $\begin{array}{c} \text{2nd} \\ \tau = 1,2 \end{array}$                                     |
| * Pour déterminer $\Sigma n_i x_i$ • On trouve : $\Sigma n_i x_i = 72$       | $\begin{array}{c c} \Sigma x \\ \hline 2nd \end{array}$                                     |
| * Pour déterminer $\Sigma n_i x_i^2$ • On trouve : $\Sigma n_i x_i^2 = 1044$ | $\begin{array}{c} \Sigma x^2 \\ \hline 2nd \end{array}$                                     |

# Texas Instruments TI-40 Collège II



\* On passe en mode statistique



\* On efface les mémoires statistiques



(CLRDATA)

\* On saisit les données.

**DATA** 

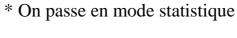
# Exemple:

|   | Note    | <b>Effectif</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---|---------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L | $(x_i)$ | $(n_i)$         | $(X1)$ 12 $\dot{\mathbf{V}}$ (FRO) 1 $\dot{\mathbf{V}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 12      | 1               | $(X1) \qquad \qquad (FRQ) \qquad \qquad (FRQ)$ |
|   | 15      | 4               | $(X2) \boxed{15} \boxed{(FRQ)} \boxed{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

\* <u>Une fois les données saisies</u>: **STATVAR** pour avoir chaque paramètre.

On se déplace dans le menu avec




et on fait



pour valider.

- \* Pour déterminer l'effectif total (n) : On trouve : N = 5
- \* Pour déterminer la moyenne  $(\overline{x})$ : On trouve la note moyenne :  $\overline{x} = 14,4$
- \* Pour déterminer l'écart type ( $\sigma x$ ) : On trouve l'écart type :  $\sigma = 1,2$
- \* Pour déterminer  $\Sigma n_i x_i$  ( $\Sigma x$ ): On trouve:  $\Sigma n_i x_i = 72$
- \* Pour déterminer  $\Sigma n_i x_i^2$  ( $\Sigma x^2$ ): On trouve:  $\Sigma n_i x_i^2 = 1044$

### Texas Instruments TI-30 XIIB



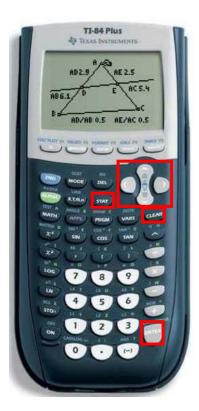


\* On efface les mémoires statistiques



\* On saisit les données. **DATA** 

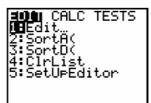



### Exemple:

| Note    | Effectif |                        |    |            |                               |   |        |               |
|---------|----------|------------------------|----|------------|-------------------------------|---|--------|---------------|
| $(x_i)$ | $(n_i)$  | (371)                  | 12 | 77         | $\int_{\mathbb{R}^{2}} dx dx$ | 1 | 77     | $\overline{}$ |
| 12      | 1        | (X1)                   |    | ) <u> </u> | J (FRQ) L                     |   |        |               |
| 15      | 4        | $\longrightarrow$ (X2) | 15 | ♡          | FRQ)                          | 4 | $\Box$ | 7             |

\* <u>Une fois les données saisies</u>: **STATVAR** pour avoir chaque paramètre.

On se déplace dans le menu avec et on fait pour valider.


- \* Pour déterminer l'effectif total (n) : On trouve : N = 5
- \* Pour déterminer la moyenne  $(\overline{x})$ : On trouve la note moyenne :  $\overline{x} = 14,4$
- \* Pour déterminer l'écart type ( $\sigma x$ ) : On trouve l'écart type :  $\sigma = 1,2$
- \* Pour déterminer  $\Sigma n_i x_i$  ( $\Sigma x$ ): On trouve:  $\Sigma n_i x_i = 72$
- \* Pour déterminer  $\Sigma n_i x_i^2$  ( $\Sigma x^2$ ): On trouve:  $\Sigma n_i x_i^2 = 1044$



#### Texas Instruments TI-84 Plus

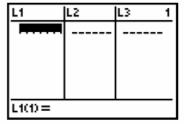
\* Aller dans le menu « STAT » pour entrer les données.





Sélectionner le menu « EDIT » et le sous-menu « 1 : Edit » et valider par ( ENTER

\* Effacer les listes de données « L1 » et « L2 » si nécessaire.


Mettre « L1 » en surbrillance à l'aide du curseur.

Appuyer sur :





Faire de même avec la liste 2.



\* Entrer les données dans les listes : Les valeurs  $x_i$  en « L1 » et les effectifs  $n_i$  en « L2 ». Si tous les effectifs sont égaux à 1, ne pas entrer de liste 2.

Utiliser le curseur et la touche (ENTER) pour valider chaque donnée.



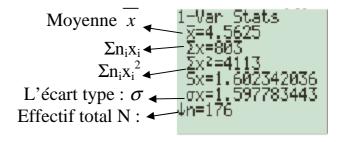
\* Calculs statistiques:

- Appuyer sur la touche STAT et sélectionner le menu « CALC » puis « 1 – Var Stats » et valider par



-Var Stats L1,L

- Indiquer dans l'ordre la liste contenant les valeurs (x<sub>i</sub>) et la liste contenant les effectifs (n<sub>i</sub>) si nécessaire.




- Valider par



Le menu suivant s'affiche.

On peut obtenir d'autres caractéristiques en se déplaçant avec le curseur (effectif total, médiane, maximum, minimum, ...)

