

BTS Groupement A et B Evaluation en Mathématiques

NIVEAU BAC / BTS

Classe:Date de l'evaluation:	
La clarté des démonstrations ou de la résolution et la qualité de la rédact	ion interviendront dans l'appréciation des copies.
Evaluation sommative mode d'enseignement h Fonction affine et linéaire - Trigonométrie - Nombres cor TICE {Calcul formel (Dérivée et Primitives), fonctions GEOGEBRA : Dérivée(< F	nplexes - Dérivée – Calcul intégral
Usage des TICE	préconisé : calcul formel et logiciel de géométrie dynamique
Fonction de la variable réelle :	
1 - Donner l'ensemble de définition de la fonction :	$f(x) = \sqrt{x^2 - 1}$
2 - Donner la fonction dérivée de : $f(x) = 2x^3 + x^2$	5x + 3
	<u>Dérivation</u>
	$[u^n]' = n \cdot u' \cdot u^{n-1}$
	Fonction: Dérivée(<fonction>)</fonction>
3 - Donner la fonction dérivée de : $f(x) = \sqrt{x^2 - 1}$,
	<i>Indications</i>
	$\sqrt{u} = u^n = u^{\frac{1}{2}} \text{ avec } n = \frac{1}{2}$ $Poser u(x) = x^2 - 1$
	Poser $u(x) = x^2 - 1$
4 - Donner les fonctions primitives $V(t)$ de la fonction : $v(t) = V_{Max} \sin(\omega.t + \varphi)$	Dérivées et primitives $[V_{\text{max}} \cos(\omega. t + \varphi)]' = -\omega. V_{\text{max}} \sin(\omega. t + \varphi)$
5 – Calculer l' aire de la fonction $f(x) = \frac{x^3}{3} - 9x + 20$ sur $[-6; 6]$: Aire $= \int_{-6}^{6} f(x) dx$	
	Fonction geogebra
	Intégrale(<fonction>, <x min="">, <x max="">)</x></x></fonction>
6 – Calculer l'intégrale : $I=\int_1^4 x. m{l} m{n}(x) dx$	Intégration par partie (IPP)
J_1	$\int u'v = [u,v] - \int u,v'$
Vous posez?	$f(x) = \ln(x)$ avec $x \in [0; +\infty[$
$u' = \dots \qquad d'où u = \dots $ $v = \dots \qquad d'où v' = \dots$	$f'(x) = \frac{1}{-}$
ν –	$\int (x) - \frac{1}{x}$
Alors: $\int u'v = [u.v] - \int u.v' =$	Fonction geogebra
	Intégrale(<fonction>, <x min="">, <x max="">)</x></x></fonction>

BTS Groupement A et B **Evaluation en Mathématiques**

Nombres complexes

Usage des TICE préconisé : calcul formel et logiciel de géométrie dynamique

7 – Développer et donner partie réelle et imaginaire de Z puis son conjugué : Z = (2 - i) (5 + i)

$$Z = (2 - i) (5 + i)$$

8- Résoudre dans \mathbb{C} : $\mathbf{z}^2 - 2\mathbf{z} + \mathbf{2} = \mathbf{0}$

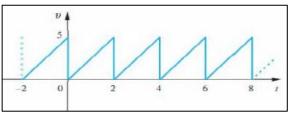
a =

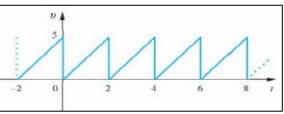
b =

Indication "méthode"

Lien complexes-second degré

 $az^2 + bz + c = 0$, $\Delta = b^2 - 4ac$ $\Delta > 0$: 2 racines réelles $\frac{-b \pm \sqrt{\Delta}}{2\pi}$


 $\Delta = 0$: 1 racine double $\frac{-b}{2a}$


 $\Delta < 0$: 2 racines conjuguées $\frac{-b \pm i\sqrt{-\Delta}}{2a}$

9 - Déterminer l'ensemble des points dont l'affixe est : | z - 2| = 2

Application du calcul intégral à l'électricité

Indication "méthode"



10 - Déterminer la période T du signal : v (t) représenté ci-dessus

$$T =$$

11 - Déterminer l'expression de v(t) en fonction de t sur [0; T]

$$v(t) =$$

> Par calcul

12 - Déterminer la valeur moyenne $\langle v(t) \rangle$ et la valeur efficace sur [0; T]

$$\langle v(t) \rangle =$$

$$\langle v(t) \rangle = \frac{1}{b-a} \int_{a}^{b} v(t)dt$$

13 - Déterminer la valeur efficace sur [0; T]

$$V_{eff}^2(t) =$$

$$d'où V_{eff} =$$

$$V_{eff}^2(t) = \frac{1}{b-a} \int_a^b v^2(t)dt$$