Module: Algèbre et Analyse

Séquence : Fonction dérivée et étude de variation d'une fonction

I) Notion de fonction dérivée :

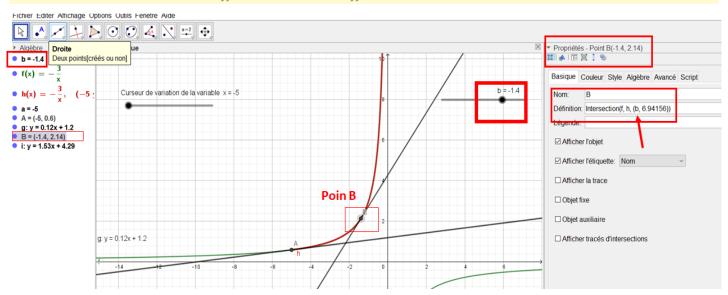
On définit une fonction f dérivable sur un intervalle I.

On appelle **fonction dérivée** de f (notée f) la fonction qui associe, à toute valeur x de I, le nombre dérivé de f en x.

Le nombre dérivé d'une fonction f en un point A d'abscisse x_A de sa courbe représentative \mathscr{C}_f est le coefficient directeur a de la tangente à la courbe au point A.

On note le nombre dérivé $f'(x_{\Delta})$.

$$f'(x_A) = a$$
.



II) Fonctions dérivées des fonctions de référence et règles de dérivation

La fonction qui, à tout nombre x, associe le nombre dérivé de f en x, est appelée fonction dérivée de la fonction f. On note f' cette fonction dérivée.

Dérivées des fonctions usuelles		
Fonction	Fonction Dérivée	
а	0	
ax + b	а	
x ²	2x	
<i>x</i> ³	$3x^2$	
1	1	
x	$-\frac{1}{x^2}$	

Dérivées des fonctions usuelles		
Dérivée		
$\frac{1}{x}$		
e ^x		
a · e ^{ax}		
$\frac{1}{2\sqrt{x}}$		

Opérations sur les dérivées		
Fonction Dérivée		
u + v	u' + v'	
k∙u	k·u′	

Niveau: BAC

III) Application des dérivées à l'étude des variations d'une fonction

Considérons une fonction numérique f, définie et dérivable sur un intervalle I.

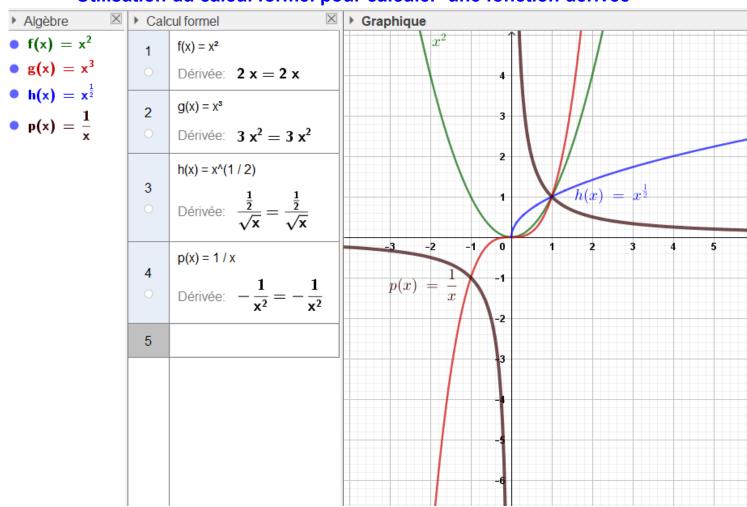
Pour tout réel x de I, Si f'(x) = 0 alors f est constante sur I Si f'(x) < 0 alors f est décroissante sur I Si f'(x) > 0 alors f est croissante sur I

Si pour une valeur de x_0 de I, $f'(x_0) = 0$ avec changement de signe, alors la fonction f passe par un **extremum** $x = x_0$.

х		x_0	
f'(x)	-	0	+
Sens de variation $\det f$		minimum	/

х			x_0		
f'(x)	+		0	-	
Sens de variation de f		/	maximum		<u> </u>

Utilisation du calcul formel pour calculer une fonction dérivée



y = f'(a)(x - a) + f(a) Complément de formules de fonctions dérivée

Dérivée

	9) (-)()	.) (-)
	Fonction	Dérivée
x^n	$n\in\mathbb{Z}$	nx^{n-1}
x^{α}	$\alpha \in \mathbb{R}$	$\alpha x^{\alpha-1}$
$e^{\alpha x}$	$\alpha\in\mathbb{C}$	$\alpha e^{\alpha x}$
a^x	$a\in\mathbb{R}_+^*$	$a^x \ln a$
$\ln x $		$\frac{1}{x}$
$\log_a x$	$a\in\mathbb{R}_+^*\smallsetminus\{1\}$	$\frac{1}{x \ln a}$
$\cos x$		$-\sin x$
$\sin x$		$\cos x$
$\tan x$		$1 + \tan^2 x = \frac{1}{\cos^2 x}$

 $\sin' x = \cos x$ et $\cos' x = -\sin x$

de la somme	(u+v)'=u'+v'
de ku	(ku)' = ku'
du produit	(uv)' = u'v + uv'
de l'inverse	$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$
du quotient	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$
de la puissance	$(u^n)' = nu'u^{n-1}$
de la racine	$\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$
du logarithme	$(\ln u)' = \frac{u'}{u}$
de l'exponentielle	$[e^u]' = u'e^u$

Formule